
RAPID COMMUNICATION

Simultaneous Quantitative Analysis of Three Compounds
Using Three-Dimensional Fluorescence Spectra Based
on Digital Image Techniques

Hong Lin Zhai & Zhi Jie Shan & Rui Na Li & E Yu

Received: 7 November 2011 /Accepted: 19 March 2012 /Published online: 3 April 2012
# Springer Science+Business Media, LLC 2012

Abstract Digital image processing has been applied on
various fields such as classification and qualitative analysis.
In this work, a very simple quantitative approach was pro-
posed for the first time. Based on the digital grayscale
images of three-dimensional fluorescence spectra, several
wavelet moment invariants were calculated, and used to
establish the linear models for the quantitative analysis. This
approach was applied to the quantitative analysis of Tryp-
tophan, Tyrosine and Phenylalanine in mixture samples, and
the correlation coefficients R2 of the obtained linear models
were more than 0.99, which were supported by the strict
statistical parameters as well as leave-one-out and Jackknife
cross-validations. Our study indicates that the selected
wavelet moment invariants are immune from the noise and
background signals, and the quantitative analysis can be
performed accurately based on the overlapping peaks of
compounds in mixture. This proposed approach provides a
novel pathway for the analysis of three-dimensional spectra.

Keywords Quantitative analysis . Three-dimensional
fluorescence spectra . Digital image processing .Wavelet
moment invariant . Cross-validation

Introduction

With the increasing of environmental pollution, the quality
and safety of foods or medicaments become more and more
important. The sensitive and rapid analytical technologies
for their monitoring and surveillance are indispensable. The
routine methods, such as chromatographic separation, ex-
traction, mass spectroscopy and atomic absorption spectros-
copy, are expensive and time consuming due to the fussy
pretreatments of samples and the exploration of strict exper-
imental conditions. Therefore, the rapid, robust and inex-
pensive analytical methodologies are preferred for routine
test. Many foods or medicaments contain a wide range of
naturally occurring fluorescent compounds such as aromatic
amino acids, vitamins, secondary metabolites, pigments,
toxins and flavoring compounds, which is very useful in
the detections of the quality and safety [1, 2].

Fluorescence spectroscopy is a versatile analytical tech-
nique and widely used in many fields such as food, biolog-
ical sciences and environmental protection owing to its
higher sensitivity and specificity, rapidity, nondestructive
detection, better representation and lower limit of detection.
Traditionally, the fluorescence spectra are obtained under a
single excitation wavelength, which can’t describe the char-
acteristics of fluorescent compounds completely because
that the intensities in fluorescence spectra are variable with
the different excitation and emission wavelengths. Three-
dimensional fluorescence spectrum, the complete fluores-
cence intensities under the excitation-emission matrix
(EEM), is composed of the serial emission spectra under
different excitation wavelengths, which provides the special
fluorescence signal for one compound, and could be used in
quantitative analysis. However, in multi-component mix-
tures, the fluorescence signals usually overlap each other
that bring on the difficulty of quantitative analysis.
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For the purpose of the quantitative analysis to the target
compounds in complex mixtures without a previous physical
or/and chemical separation, several analytical techniques of
mathematical separation have been developed and widely
accepted in the wake of the applications of high-order analyt-
ical instrumentation and multi-way data collection. The trilin-
ear parallel factor analysis (PARAFAC) model, introduced in
1970 byHarshman [3], andCarroll and Chang [4], is one of the
multi-way models, which refers to multivariate data analysis
on the data arrays. A comparison of several algorithms for
fitting the PARAFAC model was reported [5], in which the
limits and advantages of the available methods were com-
pared. Subsequently, the various algorithms using second-
order advantage were published such as alternating trilinear
decomposition (ATLD) [6], alternating penalty trilinear de-
composition (APTLD) [7], multivariate curve resolution-
alternating least-squares (MCR-ALS) [8]. Other techniques
had been proposed such as N-way principal component anal-
ysis (N-PCA) [9] and N-way partial least squares (N-PLS)
[10]. Several second-order multivariate calibration algorithms
and their applications had been reviewed in references [11, 12].

It is well known that a trilinear model can provide rea-
sonable results when the dataset is trilinear and the compo-
nent number is selected correctly. However, there is not
perfect situation in practice. Although the three-dimensional
fluorescence intensities of chemical components possess the
trilinearity, the signals derived from the Rayleigh and Raman
scatterings, diffraction harmonics and background interferen-
ces are not trilinear. Usually, these problems are avoided by
the selection of suitable wavelengths or the model improved
with a specific algorithm.

Digital image techniques have been applied in various re-
search fields including chemistry. The visual appearance of
cereal flakes was employed for the quantitative quality control
measurement [13]. An approach to the quantification of Lacto-
bacillus in fermented milk was reported using digital color
images [14]. Wavelet texture analysis was applied on the clas-
sification of paper surface quality [15]. In our previous work,
based on the fingerprints obtained from high performance
liquid chromatography coupled with diode array detector, dig-
ital image techniques were applied to the clustering analysis of
different samples, and the densities in grayscale image were
used for the quantitative analysis of three compounds [16].

In this present paper, based on digital image processing,
another novel approach to the quantitative analysis of com-
pounds in mixtures was proposed. Three-dimensional fluo-
rescence spectrum was regarded as grayscale image, and
then several wavelet moment invariants were calculated.
The linear models, which present the relationship between
the selected wavelet moment invariants and the concentra-
tion of compound, were established for three compounds in
mixtures, respectively. The statistical evaluation indicates
that the linear models have high reliability and accuracy.

Materials and Methodology

Samples and Data

The dataset employed in this work was obtained from
the public database available in the website (http://
www.models.kvl.dk/amino_acid_fluo). The samples were
generated and measured by Claus A. Andersson, and its
description can be referred to Ref. [17]. This dataset
consisted of five simple laboratory-made samples, and
each sample contained different amounts of Tryptophan
(Trp), Tyrosine (Tyr) and Phenylalanine (Phe) dissolved
in phosphate buffered water. The composition of these
samples is listed in Table 1 as Exp. columns. The
samples were measured by fluorescence (excitation
250–300 nm, emission 250–450 nm, 1 nm intervals)
on a PE LS50B spectrofluorometer. Therefore, the struc-
ture of this dataset was provided as the matrix of 5
samples×201 emissions×61 excitations. The three-
dimensional fluorescence spectrum of one sample is
shown in Fig. 1.

As can be seen from Fig. 1, the fluorescence spectrum
derived from the mixture sample including three compounds
presents the overlapping of three peaks each other, and there
were disturbances including noise and Rayleigh scattering
signals. The quantitative analysis will be a hard task without
special methods.

Analytical Method

The Image of Three-Dimensional Fluorescence Spectrum

The intensities in a three-dimensional fluorescence spectrum
were recorded as an n-by-m matrix, in which the rows (n)
corresponded to emission wavelengths and the columns (m)
to excitation wavelengths. The two-dimensional data table
(matrix) could be regarded as a “grayscale image”, and this
image can represent the intensities in the three-dimensional
fluorescence spectrum completely. In other words, the den-
sities in grayscale image agree well with the intensities in
the three-dimensional fluorescence spectrum, which are pro-
portional to the concentrations of the compounds in mixture.
As shown in Fig. 2, the peaks in a three-dimensional fluo-
rescence spectrum correspond to the different gray regions
in the image.

Wavelet Moment Invariants

In image processing techniques, the characterization of im-
age can be drawn with many features including color, tex-
tures, shape features, and so on. Image moment invariant is
one kind of important features computed from measure-
ments. Since Hu proposed the concept of moment invariant
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in 1962 [18], several types of moment invariants have been
developed and applied to pattern recognition such as Zernike
moments [19], Geometric moments [20], Legendre moments
[21] and Fourier-Mellin moments [22]. Wavelet moment
methods have been attracted more attentions and gained ex-
tensive applications owing to their multi-resolution property
[23–26].

In this study, wavelet moment invariants were
employed to describe the features in the grayscale image
of three-dimensional fluorescence spectrum. Wavelet mo-
ment invariants have been well described in many mono-
graphs and articles. Here a brief description is given as
fellows:

Let f(x,y) represents the density distribution function of a
image in Cartesian coordinates, and the geometric moments
of (p + q) order are defined as:

Mpq ¼ ∬ f x; yð Þxpyqdxdy p; q ¼ 0; 1; 2:::ð Þ ð1Þ

In polar coordinates, there are x 0 rcos(θ) and y 0 rsin(θ).
Substitute them into Eq. (1), and the general expression of
moments can be obtained as follows:

Fp;q ¼ ∬ f r; θð ÞgpðrÞe jqθrdrdθ rj j � 1; 0 � θ � 2pð Þ ð2Þ
With the different expression of gp(r), the Eq. (2) gives

the different moments:

gp(r) 0 rp Hu moments
gp(r) 0 Rm,n(r) Zernike moments
gp(r) 0 Ψm,n(r) Wavelet moments

A set of wavelet basis functions can be generated by
translation and scaling the mother wavelet, written
as:

ya;bðrÞ ¼
1ffiffiffi
a

p y
r � b

a

� �
ð3Þ

Table 1 The composition and
the calculated results of samples Sample No. Tryptophan(Trp) Tyrosine(Tyr) Phenylalanine(Phe)

Exp. Calc. Exp. Calc. Exp. Calc.

1 2.67e–06 2.67E–06 0 4.14E–07 0 3.96E–06

2 0 7.96E–09 1.33e–05 1.33E–05 0 −2.68E–06

3 0 7.99E–10 0 −1.59E–08 9.00e–4 9.01E–04

4 1.58e–06 1.59E–06 5.44e–06 5.89E–06 3.55e–4 3.49E–04

5 8.79e–07 8.59E–07 4.40e–06 3.53E–06 2.97e–4 3.01E–04
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Fig. 1 Three-dimensional
fluorescence spectrum of one
sample
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where, a is the scaling factor, b is the shift factor, and
Ψ (r) is mother wavelet function. For the digital image,
parameters a and b in Eq. (3) take only discrete values.

Suppose a02−m (m00, 1, 2, …) and b0n2−m (n00,
1, 2, …, 2m+1), the wavelet function (3) is changed into:

ym;nðrÞ ¼ 2
m
2y 2mr � nð Þ

m ¼ 0; 1; 2; . . . ; n ¼ 0; 1; 2; . . . ; 2mþ1� � ð4Þ

In this work, cubic B-spline function was adopted as
mother wavelet function. Here it is presented:

yðrÞ ¼ 4anþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p nþ 1ð Þp σw cos 2pf0 2r � 1ð Þð Þ exp � 2r � 1ð Þ2

2σ2
w nþ 1ð Þ

 !

ð5Þ
in which, n03, a00.697066, f000.409177, and σ2

w ¼
0:561145.

From Eqs. (2) and (4), the expression of wavelet
moments is obtained:

Wmnq ¼
RR

f r; θð ÞymnðrÞejqθrdrdθ
¼ R ymnðrÞr

R
f r; θð Þejqθdθ� �

dr
¼ R SqðrÞymnðrÞrdr

ð6Þ

where, SqðrÞ ¼
R
f r; θð Þejqθdθ

The wavelet moment invariants (Fmnq) are denoted from
Eq. (6):

Fmnq ¼ Wmnq

		 		 ¼ R
SqðrÞymnðrÞrdr

		 		
m ¼ 0; 1; 2; 3; . . . ; n ¼ 0; 1; . . . ; 2mþ1;

and q ¼ 0; 1; 2; 3; . . .

0
@

1
A ð7Þ

Modeling and Evaluation

Several wavelet moment invariants were selected by stepwise
regression (a systematic method for adding and removing
independent variants from a multilinear model based on their
statistical significance in a regression), and used to establish
the final linear models, which reflect the relationship between
the selectedwavelet moment invariants and the concentrations
of compounds. The performances of models were evaluated
by means of their statistical parameters such as the correlation
coefficient R2, adjusted correlation coefficient Radj

2, mean
square error (MSE), F-test for the model and t-test for the
regressive coefficients in the model. Furthermore, leave-one-
out (LOO) and Jackknife cross-validations were employed to
estimate the reliability of models.

All calculation programs were written in M-file based on
MATLAB 7.0, and carried out with PC (CPU P4 1.6 GHz/
RAM 1 GB).

Results and Discussion

Moment Invariants

As a sort of statistical indexes to describe grayscale im-
age, moment invariants possess invariability in many
operations such as shifting, scaling and rotation. Wavelet
transforms have become a powerful tool to reveal the
properties of a signal in localized regions of the time
and frequency space simultaneously. Wavelet moment
invariants are constructed by the combination of wavelet

Fig. 2 The digital image of a
three-dimensional fluorescence
spectrum
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transforms and image moment invariants. There are sev-
eral mother wavelet functions, in which cubic B-spline wave-
let function is not only near optimal in terms of its time-
frequency space localization, but also takes advantage of the
wavelet inherent property of multi-resolution analysis. Fur-
thermore, the cubic B-spline wavelet function has a compact
support. Therefore, the wavelet moment invariants based on
cubic B-spline wavelet function are capable to extract multi-
resolution features from grayscale image effectively. Taking
the advantage of multi-resolution property, we can select
several wavelet moment invariants used in quantitative anal-
ysis for the interested compounds in mixture.

The invariability of wavelet moment invariants with
higher orders is decreased due to the increasing error of
discrete numerical method. In this work, the calculation of
wavelet moment invariants was carried out within the three
of maxim order (m) and the four of maxim q in Eq. (7). Then
a total of 136 wavelet moment invariants were obtained, and
the wavelet moment invariants selected in the models are
listed in Table 2.

Linear Models

By means of the selection with stepwise regression method,
several wavelet moment invariants (listed in Table 2) were

used to establish the final linear models for the quantitative
analysis of three compounds, respectively. The linear mod-
els obtained are listed as follows:

Model 1 for Trp: CTrp0−1.5188E-06 +1.6749E-09F022

+1.5926E-09F331

Model 2 for Tyr: CTyr02.2611E-05-3.0509E-09F111

+6.8336E-10F112

Model 3 for Phe: CPhe0−2.572E-04 +2.542E-07F223

+9.822E-08F300

The performances of these models are displayed in Table 3,
the concentrations calculated with these model are listed in
Table 1 (as Calc. columns), and the comparison of concentra-
tions between experimental values and calculated values is
shown as Fig. 3.

As can been seen from Table 3 and Fig. 3, the correlation
coefficient R2 and adjusted correlation coefficient Radj

2 are
very satisfactory. The results of t-test indicate that the re-
gressive coefficients have statistical significance. F-test for
the models proves that there have best linear relationships
between the concentrations of three compounds in mixture
samples and the selected wavelet moment invariants that
derived from the image of the three-dimensional fluores-
cence spectra. These statistical parameters indicate that the
linear models are reliable.

Table 2 The wavelet moment
invariants in the models Model No. Fmnq Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Model 1 (for Trp) F022 2.4735E+03 8.4291E+02 2.9735E+02 1.6179E+03 1.2312E+03

F331 2.8491E+01 7.2162E+01 6.4143E+02 2.5119E+02 1.9843E+02

Model 2 (for Tyr) F111 8.0886E+03 4.7084E+03 9.4391E+03 8.3953E+03 8.1531E+03

F112 9.0140E+03 1.0556E+04 1.5314E+04 1.8601E+04 1.3912E+04

Model 3 (for Phe) F223 4.1496E+02 4.2937E+02 4.0109E+03 2.0073E+03 1.9729E+03

F300 1.5854E+03 1.4805E+03 1.4144E+03 9.7498E+02 5.7701E+02

Table 3 The performances of the linear models

Model No. R2 Radj
2 MSE F-test Rcv

2 Rjv
2

F-value P-value

Model 1 (for Trp) 0.9999 0.9998 2.848E–16 9106 1.1E–4 0.9994 0.9993

Model 2 (for Tyr) 0.9905 0.9811 5.612E–13 105 9.5E–3 0.9573 0.9359

Model 3 (for Phe) 0.9999 0.9997 3.940E–11 6884 1.4E–4 0.9990 0.9986

R2 correlation coefficient

Radj
2 adjusted correlation coefficient

MSE mean square error

Rcv
2 correlation coefficient with LOO cross-validation

Rjv
2 correlation coefficient with Jackknife cross-validation
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The Validation of Models

Cross-validation is a cunning technique for assessing how
the results of a model will generalize to an independent data
set. Here both LOO and Jackknife cross-validations were
employed to validate the obtained linear models.

(1) LOO validation
LOO cross-validation procedure consists of removing

one sample from the training set, reconstructing the
model on the basis only of the remaining training data,
and then predicting on the removed sample. This is
repeated such that each sample in training subset is used
once as the validation data. Then the correlation coeffi-
cient Rcv

2 is computed based on the predicted values and
experimental values, which is used to evaluate the gen-
eralization ability of the model. In our study, the values
of Rcv

2 are more than 0.95 for three models, and demon-
strate the creditability of obtained models.

(2) Jackknife validation
As another method, the Jackknife cross-validation

uses resampling to estimate the bias of a sample statis-
tic, which is thought the most objective and rigorous
way in comparison with sub-sampling test or indepen-
dent dataset test, and usually employed for assessing
the uncertainty in parameters estimates [27]. During
the process of Jackknife analysis, a sample will be in
turn moved from each to the other, and all the rule
parameters are calculated based on the remaining. The
information loss resulting from jackknifing will have a
greater impact on the small subsets than the large ones.
Nevertheless, as shown in Table 3, the Jackknife cor-
relation coefficients (Rjv

2) are satisfactory.

The results of LOO and Jackknife validation support that
our approach is efficient, and the obtained models could be
used in the quantitative analysis.

The Comparison Between PARAFAC and Our Approach

A three-way data array can be constructed with the matrices
of different samples, which presents trilinearity in the fluo-
rescence intensity, excitation emission and wavelengths.
PARAFAC is one of important analytical methods for the
three-dimensional fluorescence spectra of mixture. Howev-
er, there are still several hard nuts to crack. First, it is
difficult to decide the best rank of a three-way array in
PARAFAC model due to many factors such as noise signals
and too many components. Second, Rayleigh scatter is not
trilinear in its nature, and should be avoided or eliminated in
the decomposition. In the analysis of this dataset by PAR-
AFAC [17], compared with the four-component model, the
three-component model was readily accepted because that
the three loadings resemble the pure spectra of three com-
pounds. The fourth component seemed to be scatter effects
that caused some additional systematic variation. In order to
eliminate the influence of Rayleigh scatter, the region of
excitation wavelengths (range: 240–249 nm) was removed.
Hence, the data array decomposed is only 5 samples×51
excitations×201emissions.

Owing to the characteristic of multi-resolution in the
time-frequency space simultaneously, wavelet moment
invariants with different orders can represent the various
signals (such as noises, compounds and Rayleigh scatter)
in the grayscale image of three-dimensional fluorescence
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Table 4 The comparison of results between PARAFAC and our
approach

Compound Exp. conc. PARAFAC Our approach

Trp 8.79e–7 7.8E–7 8.60E–7

Tyr 4.40e–6 3.5E–6 3.54E–6

Phe 2.97e–4 2.3E–4 3.01E–4
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spectrum. Therefore, in our approach, the quantitative anal-
ysis for the three compounds in mixture can be done directly
in whole data array without any cutting. It is easy to find out
the special wavelet moment invariants that only correspond
to the signals of interested compounds. Thus the noise and
Rayleigh scatter signals cannot affect the analytical results.
As shown in Table 4, the satisfactory results were obtained
by our approach.

Conclusion

The quantitative analysis of multi-target compounds in mix-
ture is always important issue in analytical chemistry. Three-
dimensional fluorescence spectrum provides the enough
information for the quantitative analysis of interested com-
pounds in mixture. Utilizing the techniques of digital image
processing, especially the characteristic of multi-resolution
in wavelet moment invariants of grayscale image, a novel
and simple approach to the quantitative analysis was devel-
oped. Our study indicates that this approach is more effi-
cient, and the results obtained are reliable and accurate,
which could decrease the difficulty of separation and the
analytical costs for mixtures. This idea can also be further
expanded to the analyses of other three-dimensional spectra.
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